skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burchfield, Jeffrey C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Urbanization tends to increase local lightning frequency (i.e. the ‘lightning enhancement’ effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and magnitude of lightning enhancement vary with geography, climate, air pollution, topography and urban development. The likelihood of exhibiting lightning enhancement increased with higher temperature and precipitation in urban areas relative to their natural surroundings (i.e. urban heat islands and elevated urban precipitation), higher regional lightning strike frequency, greater distance to water bodies and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat islands and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas and lower latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that these are dominant mechanisms by which cities cause local lightning enhancement. 
    more » « less
  3. Summary Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase. 
    more » « less
  4. Abstract Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real‐time lightning monitoring system. We examined 2,195 lightning‐damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2(95% CI: 365–545 m2), created a canopy gap of 304 m2(95% CI 198–454 m2), and caused 7.36 Mg of woody biomass turnover (CI: 5.36–9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8–29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning‐caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests. 
    more » « less
  5. Summary The mortality rates of large trees are critical to determining carbon stocks in tropical forests, but the mechanisms of tropical tree mortality remain poorly understood. Lightning strikes thousands of tropical trees every day, but is commonly assumed to be a minor agent of tree mortality in most tropical forests.We use the first systematic quantification of lightning‐caused mortality to show that lightning is a major cause of death for the largest trees in an old‐growth lowland forest in Panama. A novel lightning strike location system together with field surveys of strike sites revealed that, on average, each strike directly kills 3.5 trees (> 10 cm diameter) and damages 11.4 more.Given lightning frequency data from the Earth Networks Total Lightning Network and historical total tree mortality rates for this site, we conclude that lightning accounts for 40.5% of the mortality of large trees (> 60 cm diameter) in the short term and probably contributes to an additional 9.0% of large tree deaths over the long term.Any changes in cloud‐to‐ground lightning frequency due to climatic change will alter tree mortality rates; projected 25–50% increases in lightning frequency would increase large tree mortality rates in this forest by 9–18%. The results of this study indicate that lightning plays a critical and previously underestimated role in tropical forest dynamics and carbon cycling. 
    more » « less